Matrix Generators for Exceptional Groups of Lie Type
نویسندگان
چکیده
Until recently it was impractical to use general purpose computer algebra systems to investigate Chevalley groups except for those of small rank over small fields. But computer algebra systems (such as Magma (Bosma et al. 1997) and GAP (Schönert et al. 1994)) now have the power to deal with some aspects of all finite groups of Lie type. A natural way to represent these groups is via matrices over the defining field. Thus, for computational purposes, there is a need to provide matrix generators for these groups. This has been done for the classical groups (Taylor 1987, Rylands and Taylor 1998) and now it remains to extend this to all finite groups of Lie type. It is the purpose of the present paper to give a uniform method of constructing generators for groups of Lie type with particular emphasis on the exceptional groups. The constructions described here could be carried out within any computer algebra system and, in particular, have been implemented in Magma. This completes the determination of matrix generators for all groups of Lie type, including the twisted groups of Steinberg, Suzuki and Ree (and the Tits group). The Lie algebras and related Chevalley groups of types An, Bn, Cn and Dn can be identified with classical groups (Carter (1972), §11.3), and in Taylor (1987) and Rylands and Taylor (1998) this identification was used to translate the generators given by Steinberg (1962) to matrix forms. The constructions in this paper rely on an investigation of the root systems of Lie algebras, providing a uniform approach and avoiding case by case discussions of nonassociative algebras. In each case (except E8) we obtain the lowest dimensional module for the Lie algebra via an embedding in a Lie algebra of higher rank.
منابع مشابه
Flag-transitive point-primitive $(v,k,4)$ symmetric designs with exceptional socle of Lie type
Let $G$ be an automorphism group of a $2$-$(v,k,4)$ symmetric design $mathcal D$. In this paper, we prove that if $G$ is flag-transitive point-primitive, then the socle of $G$ cannot be an exceptional group of Lie type.
متن کاملar X iv : m at h - ph / 0 21 00 58 v 1 3 0 O ct 2 00 2 Random matrix theory , the exceptional Lie groups , and L - functions
Random matrix theory, the exceptional Lie groups, and L-functions. Abstract There has recently been interest in relating properties of matrices drawn at random from the classical compact groups to statistical characteristics of number-theoretical L-functions. One example is the relationship conjectured to hold between the value distributions of the characteristic polynomials of such matrices an...
متن کاملExceptional Lie groups
Now, in the present book, we describe simply connected compact exceptional simple Lie groups G2, F4, E6, E7, E8, in very elementary way. The contents are given as follows. We first construct all simply connected compact exceptional Lie groups G concretely. Next, we find all involutive automorphisms σ of G, and determine the group structures of the fixed points subgroup G by σ. Note that they co...
متن کاملLie symmetry analysis for Kawahara-KdV equations
We introduce a new solution for Kawahara-KdV equations. The Lie group analysis is used to carry out the integration of this equations. The similarity reductions and exact solutions are obtained based on the optimal system method.
متن کاملRecognizing simplicity of black-box groups and the frequency of p-singular elements in affine groups
We consider the asymptotic complexity of manipulating matrix groups over finite fields. The question is, given a matrix group G by a list of generators, what can we say in polynomial time about the structure of G? While considerable progress has been made recently in identifying the nonabelian composition factors of a matrix group, the fundamental question of recognizing the simplicity of a non...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Symb. Comput.
دوره 31 شماره
صفحات -
تاریخ انتشار 2001